If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5k^2-10k-1=0
a = 5; b = -10; c = -1;
Δ = b2-4ac
Δ = -102-4·5·(-1)
Δ = 120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{120}=\sqrt{4*30}=\sqrt{4}*\sqrt{30}=2\sqrt{30}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{30}}{2*5}=\frac{10-2\sqrt{30}}{10} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{30}}{2*5}=\frac{10+2\sqrt{30}}{10} $
| g+2=52 | | -16+8=-m-7(-6+7m) | | -x/3+5=13 | | 9x-11+80+57=180 | | X+4y=130° | | -2x-4(4x-8)=3(-8x-1) | | 8-10(2x-3)=28 | | 6x–(2x+4)=12 | | 41n+18=49n+43 | | u+11=95 | | -n+3.7=-8.4 | | 2x+13=5x-6x+22 | | 10=-16t^2+85t+4 | | -6(5n+1)=-4(8n-4)+6 | | 1250+70x=800+40x | | y+441=532 | | y+-441=532 | | 3-6x÷3=-11 | | w+15=15 | | -7(8r+4)+r=522 | | -3(+-4)6t-8=-2t+6 | | 4c+3-6c-c=1 | | 2(-x+2)=4(x-2) | | 896=14h | | S(x)=30(4.4)^x | | 63=1.08^x+20 | | 2m-4=6m+12 | | x/100=60/96 | | −2(a+3)+4a=18 | | b-90=743 | | 7x-22-6x-46=180 | | (4n/5)-(1/5)=3 |